Database Options
BrowserAI provides built-in database support using IndexedDB and SQLite for managing AI data, conversations, and embeddings directly in the browser.
Database Configuration Options
Option | Type | Default | Description |
---|---|---|---|
databaseName | string | ’BrowserAI-DB’ | Name of the database |
version | number | 1 | Database version for schema updates |
storeName | string | ’BrowserAIStore’ | Name of the object store |
type | ’indexeddb’ | ‘sqlite' | 'indexeddb’ | Type of database to use |
Database Operations
The database implementation supports the following core operations:
Operation | Description |
---|---|
store | Store a new document with unique ID |
get | Retrieve a document by ID |
getAll | Retrieve all stored documents |
update | Update an existing document |
delete | Delete a document by ID |
clear | Clear all documents from database |
Example Usage
import { DatabaseImpl } from '@browserai/browserai';
// Initialize database
const db = new DatabaseImpl();
await db.initialize({
type: 'indexeddb',
config: {
databaseName: 'MyApp-DB',
version: 1,
storeName: 'documents'
}
});
// Store a document
await db.store({
id: 'doc1',
text: 'Sample document',
embedding: [0.1, 0.2, 0.3] // Optional embedding vector
});
// Retrieve a document
const doc = await db.get('doc1');
console.log(doc); // { id: 'doc1', text: 'Sample document', ... }
// Update a document
await db.update({
id: 'doc1',
text: 'Updated document'
});
// Delete a document
await db.delete('doc1');
// Clear database
await db.clear();
// Close database connection
db.close();
Vector Store Support
The database also supports vector storage and similarity search when working with embeddings:
// Initialize vector store
db.setVectorStore('default');
// Add vector for a document
await db.addVector('doc1', [0.1, 0.2, 0.3]);
// Search similar documents
const similarDocs = await db.searchVector([0.1, 0.2, 0.3], 5);
console.log(similarDocs); // ['doc2', 'doc3', ...]
IndexedDB Demo Implementation
Here’s a complete example showing how to implement a database interface with React:
import { useEffect, useState } from 'react';
import { DatabaseImpl } from '@browserai/browserai';
function DatabaseDemo() {
const [db, setDb] = useState(null);
useEffect(() => {
const initDb = async () => {
const database = new DatabaseImpl();
await database.initialize({
type: 'indexeddb',
config: {
databaseName: 'BrowserAI-DB',
version: 1,
stores: { documents: { keyPath: 'id' } }
}
});
setDb(database);
};
initDb();
return () => db?.close();
}, []);
const handleStore = async () => {
await db.store({
id: 'doc1',
text: 'Sample text',
embedding: [0.1, 0.2, 0.3]
});
};
// ... other database operations
}
Best Practices
- Initialize Early: Initialize the database when your application starts
- Close Properly: Always close database connections when no longer needed
- Error Handling: Implement proper error handling for database operations
- Version Management: Increment database version when changing schema
- Unique IDs: Ensure document IDs are unique within your application
Limitations
- IndexedDB storage is limited by available browser storage
- Vector store operations require additional memory for similarity computations
- SQLite support requires additional setup in some environments
For detailed examples of database implementations, see the Database Demo.