AdvancedStructured Generation

Structured Generation

BrowserAI supports generating structured outputs using JSON schemas to enforce specific response formats.

Using JSON Schemas

Define output structure using the json_schema option and specify response_format:

const response = await browserAI.generateText('List 3 popular colors', {
  json_schema: {
    type: "object",
    properties: {
      colors: {
        type: "array",
        items: {
          type: "object",
          properties: {
            name: { type: "string" },
            hex: { type: "string" }
          }
        }
      }
    }
  },
  response_format: {
    type: "json_object"
  }
});
 
// Returns:
// { "choices": [
//   { "message": { 
//     "content": {
//       "colors": [ 
//         { "name": "blue", "hex": "#0000FF" },
//         { "name": "red", "hex": "#FF0000" },
//         { "name": "green", "hex": "#00FF00" }
//       ]
//     } 
//   } 
//  ]
// }

Schema Examples

Person Profile Schema

const response = await browserAI.generateText('Create a profile for John', {
  json_schema: {
    type: "object",
    properties: {
      name: { type: "string" },
      age: { type: "number" },
      hobbies: {
        type: "array",
        items: { type: "string" }
      }
    }
  },
  response_format: {
    type: "json_object"
  }
});

Try it Out

You can find a complete working example in the examples/schema_llm directory of the BrowserAI repository. This example demonstrates:

  • Different schema types and structures
  • Real-time schema validation
  • Error handling
  • UI integration

To run the example:

cd examples/schema_llm
npm install
npm run dev

Best Practices

  1. Always include response_format: { type: "json_object" } when using JSON schemas
  2. Make your prompts specific about the structure you expect
  3. Use clear property names in your schema
  4. Consider adding validation constraints in your schema (e.g., minimum/maximum values)
  5. Handle the response as JSON using JSON.parse()